一边吃奶一边扎下边爽了,熟妇人va精品中文字幕,日本精品少妇一区二区三区,爱情岛永久论坛亚洲品质

歡迎來到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢熱線

13236572657

當前位置:首頁  >  技術(shù)文章  >  英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

更新時間:2021-11-30  |  點擊率:1670

英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


亚洲精品无码永久中文字幕| 破了亲妺妺的处免费视频国产| 丰满多毛的大隂户视频| 公交车短裙挺进太深了H女友| 妺妺窝人体色www| 久久婷五月丁香色啪网| 我和两个老师的浮乱生活| 99久久国产福利自产拍| 曰本胸大巨胸做爰视频| 亚洲AV永久无码精品无码麻豆| 亚洲欧洲∨国产一区二区三区 | 欧美三级a做爰在线观看| 福彩3d字谜图谜总汇| 女孩子做哭另一个女孩子| 车内车内做运动又激烈| 野花直播视频免费高清完整版| 欧美性XXXXX极品少妇| 女人被强╳到高潮喷水在线观看| 射不出来| 精品国产一区二区av片| 亚洲VA无码专区国产乱码| 老太BBwwBBww高潮| AV片在线观看| 日本妞xxxxxxxxx68| 国产毛多水多女人a片| 中文字幕无码日韩欧免费软件 | 影音先锋男人av橹橹色| 中文字幕 亚洲精品 第1页| 97精品久久久久中文字幕| 国产a国产片国产| sao货腿张开ji巴cao死我 | 肉欲公车系500章| 四虎永久在线精品无码| 又摸又揉又黄又爽的视频| 色一情一乱一伦| 曰曰摸日日碰夜夜爽歪歪| 闺蜜和我被黑人4p到惨| 久久亚洲色www成人欧美| 久久无码中文字幕东京热| 精品人妻AV一区二区三区| 老头猛挺进小雯的体内视频|